1/7/2025	DATE
✓	REQUIRED COURSE
	FLECTIVE COLIRSE

MSD	DIVISION
	NEW COURSE
J	REVISION

Lake Land College Course Information Form

					Course information i	OIIII								
COURSE NUMBER:		CHM-253		TITLE: (30 Characters	ers Max) Organic Chem		Chemistry	Laborato	ry I					
SEM CR HRS:	1	1 Lecture:			0		Lab: 3					ECH:	3	
Course Level:					echnical Not in Degree Audit	Clinical Pract		ticum:	0	Work- Lear		0	WBL ECH:	0
COURSE PCS #			11 - 40.0504		IAI Code	CHM		913		Contact Hours ((Minutes/Week)		
Repeatable (Y/N):	Ν		Pass/Fail (Y/N):	Ν	Variable Credit (Y/N):	Ν	Min:		Max:		16 Wks	150	8 Wks	300
Prerequisites:		CHM-151												
Corequisites:		CHM-243												
Catalog Description: (40 W Limit)	ord	Labo	oratory course introduces synth	iesis i	and the basic techniques for	the se	eparation, i	isolation, p	ourificatio	n and ide	ntification	of organ	ic compoi	unds.

List the Major Course Segments (Units)	Contact Lecture Hours	Contact Lab Hours	Clinical Practicum	Work-based Learning
Panacetin separation		3		
Salicylic acid synthesis		3		
IR spectroscopy and mass spectrometry		12		
Banana oil synthesis		6		
Bromobutane preparation		3		
Methylcyclohexenes		3		
Bromine addition		3		
Alkyne synthesis		3		
Vanillin reduction		3		
Pinacol rearrangement		6	·	
TOTAL	. 0	45	0	0

	E	VALUATION	
QUIZZES 🗸	EXAMS 🗹	ORAL PRES	PAPERS
LAB WORK 🗸	PROJECTS	COMP FINAL ✓	OTHER

COURSE MATERIALS				
TITLE:	Operational Organic Chemistry			
AUTHOR:	John W. Lehman			
PUBLISHER:	Pearson / Prentice Hall			
VOLUME/EDITION/URL:	4th edition			
COPYRIGHT DATE:	2009			

MAJOR COURSE SEGMENT	HOURS	LEARNING OUTCOMES
		The student will be able to:
Panacetin separation	3	Perform basic separation techniques. Demonstrate the use of a separatory funnel. Conduct a separation using a rotovap. Determine melting points.
Salicylic acid synthesis	3	Use a reflux as a reaction technique. Conduct acid-base extractions. Perform a recrystallization. Infer reaction success from melting point data.
Infrared spectroscopy and mass spectrometry	12	Distinguish and identify functional groups using IR spectra. Interpret mass spectra. Identify unknowns using spectral data. Collect IR spectra using an FT-IR instrument.
Banana oil preparation	6	Perform a reaction under reflux. Utilize a simple distillation to purify a liquid product of a chemical reaction. Infer success via IR spectroscopy.
Bromobutane preparation	3	Compare SN1 and SN2 reaction pathways. Perform a reaction using short path distillation. Infer success using IR spectroscopy.

Methylcyclohexenes	3	Demonstrate an E1 reaction using simple distillation. Describe how Le Chateliers Principle affects equilibrium. Identify reaction impurities through IR spectroscopy.
Bromine addition	3	Perform an electrophilic addition to alkene. Demonstrate the addition under reflux technique. Infer success using IR spectroscopy. Identify stereochemistry using melting point data.
Alkyne synthesis	3	Synthesize an alkene using an E2 reaction Complete a multi-step synthesis Infer success using IR spectroscopy and melting point data
Vanillin reduction	3	Perform a hydride reduction on vanillin. Carry out a reaction in a beaker. Verify hydride addition using IR spectroscopy and melting point.
Pinacol rearrangement	6	Perform a reaction under reflux. Purify products using simple distillation. Investigate cation reaction pathways. Identify the presence of two different products using IR spectroscopy.
-	45	

Outcomes*	At the successful completion of this course, students will be able to:
Course Outcome 1	Employ basic lab techniques such as reflux, distillation, recrystallization, extraction, and separation of organic molecules.
Course Outcome 2	Report detailed observations and results in a "research style" lab notebook.
Course Outcome 3	Assess physical data to formulate scientific conclusions.
Course Outcome 4	Use modern instrumentation.
Primary Laker Learning Competency	Scientific Literacy: Students identify foundational science concepts and apply the scientific process to real-life situations.
Secondary Laker Learning	
Competency	Creative Thinking & Problem Solving: Students think creatively and solve problems by successfully combining knowledge in new ways.

^{*}Course and program outcomes will be used in the software for outcomes assessment and should include at least 1 primary and 1 secondary Laker Learning Competency. Limit to 3-5.