12/12/2024	DATE
✓	REQUIRED COURSE
✓	ELECTIVE COURSE

MSD	DIVISION
	NEW COURSE
	PEVISION

Lake Land College Course Information Form

COURSE NUMBER:		CHM-254		TITLE: (30 Characters Ma	x)		Organic (Chemistry	Laborato	ry II			
SEM CR HRS:	1	Lecture:		0		Lak	b:	3				ECH:	3
Course Level:		Gen Ed / IAI Baccalaureate /Non-IAI		Technical Not in Degree Audit	Clir	nical Pract	icum:	0	Work- Learr		0	WBL ECH:	0
COURSE PCS #		11 - 40.0504		IAI Code			CHM	1 914		Con	act Hours	(Minutes/We	eek)
Repeatable (Y/N):	N	Pass/Fail (Y/N):	N	Variable Credit (Y/N):	N	Min:		Max:		16 Wks	150	8 Wks	300
Prerequisites:		CHM-243 and CHM-253											
Corequisites:		CHM-244											
Catalog Description: (40 W Limit)	ord	Laboratory experiments in org	anic chei	mistry with a focus on multi-step syn	thesis.								

List the Major Course Segments (Units)	Contact Lecture Hours	Contact Lab Hours	Clinical Practicum	Work-based Learning
Williamson ether synthesis		3		
Diels-Alder		3		
Vanillin bromination		3		
Wittig reaction		3		
Anhydride hydrolysis		3		
Fischer esterification		3		
Benzylic acid synthesis		3		
Lactone formation (unexpected)		9		
Carbonyl condensation		3		
NMR spectroscopy		12		
TOTAL	0	45	0	0

		EVALUATION		
QUIZZES ✓	EXAMS 🗹	ORAL PRES		PAPERS
LAB WORK	PROJECTS	COMP FINAL	✓	OTHER

	COURSE MATERIALS	
TITLE:	Operational Organic Chemistry	
AUTHOR:	John W. Lehman	
PUBLISHER:	Pearson / Prentice Hall	
VOLUME/EDITION/URL:	4th edition	
COPYRIGHT DATE:	2009	

MAJOR COURSE SEGMENT	HOURS	LEARNING OUTCOMES
		The student will be able to:
Williamson ether synthesis	3	Use a reflux as a reaction technique. Conduct acid-base extractions. Perform a recrystallization. Infer reaction success from IR and melting point data.
Diels-Alder	3	Use a fractional distillation to crack a diene. Complete a Diels-Alder reaction. Utilize NMR and IR to deduce product structure.
Vanillin bromination	3	Execute and SEAr reaction on vanillin. Perform a recrystallization. Determine the site of reaction using J-values. Validate pre-reaction predictions.
Wittig reaction	3	Demonstrate a common nucleophilic addition reaction. Conduct an organic extraction. Determine stereochemistry melting point. Utilize NMR and IR to deduce product structure.
Anhydride hydrolysis	3	Demonstrate the reactivity of anyhydrides. Utilize NMR and IR to deduce product structure.

Fischer esterification	3	Use a reflux as a reaction technique. Operate a rotary evaporator. Utilize NMR and IR to deduce product structure.
Benzylic acid synthesis	3	Use a reflux as a reaction technique. Use decolorizing agents and filter aid. Assess the success of a rearrangement using NMR data.
Lactone formation	9	Predict the normal outcome of alkene bromination. Conclude that alkene bromination did not happen. Construct a product structure from IR and NMR data. Formulate a hypothesis as to why a lactone forms. Recommend an alternate route to achieve alkene bromination.
Carbonyl condensation	3	Demonstrate microscale reaction techniques. Investigate the challenges of a crossed aldol. Deduce reaction success and purity from IR and NMR data.
NMR spectroscopy	12	Interpret proton and carbon NMR spectra. Identify unknowns using tandem NMR and IR data. Formulate experimental conclusions using NMR evidence. Operate a 60 MHz NMR spectrometer.
	45	

Outcomes*	At the successful completion of this course, students will be able to:
Course Outcome 1	Employ basic lab techniques such as reflux, distillation, recrystallization, extraction, and separation of organic molecules.
Course Outcome 2	Report detailed observations and results in a "research style" lab notebook.
Course Outcome 3	Assess physical data to formulate scientific conclusions.
Course Outcome 4	Use modern instrumentation.
Course Outcome 5	Plan and perform a multi-step synthesis.
Course Outcome 6	Produce a written ACS Publication style report.
Primary Laker Learning Competency	Scientific Literacy: Students identify foundational science concepts and apply the scientific process to real-life situations.
Secondary Laker Learning Competency	Creative Thinking & Problem Solving: Students think creatively and solve problems by successfully combining knowledge in new ways.

^{*}Course and program outcomes will be used in the software for outcomes assessment and should include at least 1 primary and 1 secondary Laker Learning Competency. Limit to 3-5.