3/21/2025	DATE
	REQUIRED COURSE
	ELECTIVE COURSE

MSD	DIVISION
	NEW COURSE
✓	REVISION

Lake Land College Course Information Form

COURSE NUMBER:		MAT-210		TITLE: (30 Characters Max)		Finite Ma	thematics					
SEM CR HRS:	3.0	Lecture:		3.0	La	b:	0.0	ICCB	Lab:	0.0	ECH:	3.0
Course Level:			,	echnical lot in Degree Audit	Clinical P	racticum:	0.0	Work-based Learning:		0.0	WBL ECH:	0.0
COURSE PCS #		11 - 27.0301		IAI Code		M1	906		Cor	tact Hours (Minutes/We	ek)
Repeatable (Y/N):	Ν	Pass/Fail (Y/N):	Ν	Variable Credit (Y/N): N	Min:		Max:		16 Wks	150	8 Wks	300
Prerequisites:		lacement by assessment or either MAT-129 or MAT-130 or MAT-140 with a grade of "C" or higher. Also one year of high school geometry or MAT-009.										
Corequisite		one										
Catalog Description: (40 Wo Limit)	ord	An introduction to Finite Mathemat	ics, r	natrices, linear systems of equation	ns and ine	qualities, li	inear prog	ramming,	counting	theory and	d probabili	ty.

List the Major Course Segments (Units)	Contact Lecture Hours	Contact Lab Hours	Clinical Practicum	Work-based Learning
Linear systems	6			
Matrix operations/applications	6			
Linear programming	12			
Sets and probability	12			
Expected value	2			
Counting theory, permutations and combinations	4			
Binomial distributions	3			
TOTAL	45	0	0	0

		EVALUATION			
QUIZZES 🗹	EXAMS☑	ORAL PRES		PAPERS	
LAB WORK	PROJECTS ☑	COMP FINAL	✓	OTHER	

	COURSE MATER	IALS
TITLE:	Mathematics with Applications	
AUTHOR:	Lial, Hungerford, Holcomb, Mullins	
PUBLISHER:	Pearson/Addison Wesley	
VOLUME/EDITION/URL:	12th	
COPYRIGHT DATE:	2019	

MAJOR COURSE SEGMENT	HOURS	LEARNING OUTCOMES
		The student will be able to:
Linear systems		
Systems of linear equations and echelon method	3	Solve a linear system by Gaussian elimination to echelon form.
Solution of linear systems by the Gauss-Jordan method	3	Solve a linear system by Gauss-Jordan elimination to rref.
Matrix operations/applications		
Basic matrix operations	2	Calculate matrix and scalar multiplication
Multiplication of matrices	1	1. Multiply matrices.
Matrix inverses	2	Invert a matrix. Apply the inverse to solve a linear system.
Applications of matrices	1	1. Solve application problems using matrices.
Linear programming		
Graphing linear inequalities in two variables	2	1. Graph a system of linear inequalities in x and y.

Solving linear programming problems graphically	2	Solve linear programming problems using graphical method.
Applications of linear programming	2	Solve linear programming application problems.
The simplex method: slack variables and the pivot	3	1. Calculate the simplex method.
Solving minimization and nonstandard maximization problems	3	Solve linear programming problems minimization or nonstandard maximization problems.
Sets and probability		
Sets	2	Assess sets, subsets vs. elements, intersections and unions and other set-theoretic concepts.
Applications of Venn diagrams	1	Apply Venn diagrams to solve application problems.
Probability	2	Determine sample spaces, disjoint events, the basic probability principle, and properties of probability.
Basic concepts of probability	3	Calculate the addition rule, the complement rule and odds. Apply them to solve application problems.
Conditional probability	2	Apply conditional probability and the product rule.
Bayes' Formula	2	Apply Bayes' Formula for two and for n events. Apply them to solve application problems.
Expected value		
Probability distributions and expected value	2	Evaluate probability distributions and expected value. Apply them to solve application problems.
Counting theory, permutations and combinations		
Permutations and combinations	2	Demonstrate the difference between permutations and combinations of n objects taken r at a time.
Applications of counting	2	Apply permutations, combinations, and the multiplication principle to solve application problems.
Binomial distributions		
Binomial experiments	3	Apply the binomial distribution to solve application problems.
	AE.	

Outcomes* At the successful completion of this course, students will be able to:		
Course Outcome 1	Apply matrix operations and determine how they apply to solving systems of equations.	
Course Outcome 2	Solve a linear programming problem by graphical method (in two variables) or by the simplex method.	
Course Outcome 3	Solve probability problems using basic probability formulas.	
Course Outcome 4	Calculate probabilities using the multiplication principle, permutations, and combinations	
Course Outcome 5	Set up the equations or inequalities for word problems in linear systems, linear programming, and probability.	
Program Outcome	Critical Thinking: Students connect knowledge from various disciplines to formulate logical conclusions.	
Laker Learning Competency	Quantitative Literacy: Students analyze data and mathematical patterns in real-life situations.	

^{*}Course and program outcomes will be used in the software for outcomes assessment and should include at least 1 Laker Learning Competency. Limit to 3 - 5.