8/30/2022	DATE
	REQUIRED COURSE
V	ELECTIVE COURSE

Lake Land College

DIVISION NEW COURSE REVISION

			C	course information For	m								
COURSE NUMBER:		MAT-211		TITLE: (30 Characters	Max)		Mathe	matical A	Analysis	3			
SEM CR HRS:	4	Lecture:		4			Lab:	0				ECH:	4
Course Level:		Gen Ed / IAI Baccalaureate /Non-IAI		F echnical Not in Degree Audit	Clinic	cal Practi	cum:	0		k-based _earning	0	WBL ECH:	0
COURSE PCS #		11 - 27.0301		IAI Code			M1 9	00-B		Contac	t Hours (M	inutes Per V	/eek)
Repeatable (Y/N):	Ν	Pass/Fail (Y/N):	Ν	Variable Credit (Y/N):		Min:		Max:		16 Wks	200	8 Wks	400
Prerequisites:		Placement by assessment	or either MA	T-129 or MAT-130 or MAT 1	40 with	n a grade	of 'C'	or higher	; also 1	yr high so	hool geo	metry or N	1AT-009
Catalog Description: (40 W Limit)				is of polynomial calculus with of differentiation & integrati									matics

List the Major Course Segments (Units)	Contact Lecture Hours	Contact Lab Hours	Clinical Practicum	Work-based Learning
Mathematics of finance: simple and compound interest, future and present value, geometric series, annuities and sinking funds, loan amortization	10			
Differential calculus of algebraic functions: limits and tangent lines, differentiation rules	15			
Applications of derivatives to business and social sciences: maxima and minima, first and second derivative tests, extreme value theorem, curve sketching for functions of one variable; maxima and minima and second partials test for functions of two variables	15			
Integral calculus of algebraic functions: antiderivatives, Riemann sums and area, integration skills including substitution and integration by parts; applications to business and social sciences	15			
Tests	5			
TOTAL	60	0	0	0

		EVALUATION		
QUIZZES 🗹	EXAMS 🗹	ORAL PRES	PAPERS	
LAB WORK	PROJECTS	COMP FINAL	☑ OTHER	

	COURSE MATERIALS	
TITLE:	Mathematics with Applications	
AUTHOR:	Lial, Hungerford, and Holcomb	
PUBLISHER:	: Addison-Wesley	
VOLUME/EDITION/URL:	: 12th	
COPYRIGHT DATE:	: 2019	

MAJOR COURSE SEGMENT	HOURS	LEARNING OUTCOMES
		The student will be able to:
Chapter 5		Learn applications of compounding to business and
Simple interest formula with application to present/future value.	2	science and amortization to real-world experiences
Simple compound interest, effective rate, continuous compounding	4	
Sequences/Annuities/Amortization	4	
Chapter 11		
Limits of functions using calculators and/or algebra	3	
Rates of change and tangent lines	3	Recognize the limit process. Learn the derivative as
Derivatives of polynomial functions and techniques for finding	2	limit of a difference quotient and as slope of tangent.
Power and quotient rules for differentiation	2	Learn rules of differentiation.
Chain Rule for differentiation	2	Learn dies of differentiation.
Transcendental functions: In x, ex and their derivatives	2	
Continuous functions of algebra and continuous functions of business	1	
Chapter 12		
Test for increasing/decreasing, maxima/minima, and first derivative	2	
Second derivative test & test for concavity	2	Demonstrate first and second derivative tests to find
Optimization applications to business and social science	2	maxima and minima. Apply differentiation to

Curve sketching	2	business and social sciences and to curve sketching.
Chapter 14		
Limits of functions of two variables	1	Recognize limits, partial derivatives, and critical
Partial derivatives of functions of two variables	2	points of functions of two variables. Learn Second
Critical points of functions of two variables	1	Partials Test. Application problems in business and
Second partials test	2	social sciences involving optimization of functions of
Optimization applications in business and social sciences	1	two variables
Chapter 13		
Anti-derivatives with applications	3	
Integration by substitution with applications	3	Learn integration as appealts of differentiation
Integration by parts	2	Learn integration as opposite of differentiation. Apply integration to business and social sciences.
Area under graphs of algebraic functions	3	Apply integration to business and social sciences.
The Fundamental Theorem of Calculus	2	
Business and social science applications	2	
Tests	5	
	60	

COURSE OUTCOMES*	At the successful completion of this course, students will be able to:
	• Demonstrate finance formulas to solve problems involving simple and compound interest, annuities, and the present value of annuities
	Find the limits of functions graphically and algebraically
	• Find derivatives of algebraic, logarithmic, and exponential functions, and Demonstrate derivatives to solve applied problems
	Demonstrate the first and second derivatives to analyze graphs of functions
	• Find integrals of some algebraic and exponential functions, and Demonstrate integrals to solve applied problems.

* Course Outcomes will be Demonstrated in the Assessment Software for Outcomes Assessment. Limit to 3 - 5.