5/28/2025	DATE
	REQUIRED COURSE
✓	ELECTIVE COURSE

MSD	DIVISION
	NEW COURSE
V	REVISION

Lake Land College Course Information Form

COURSE NUMBER:		MAT-241 TITLE: (30 Characters Max) Analytic Geometry & Calculus I												
SEM CR HRS:	5.0)	Lecture:		5.0		La	ib:	0.0 ICCB		Lab:	0.0	ECH:	5.0
Course Level:		Gen Ed/IAI Career/T Baccalaureate/Non-IAI Dev Ed/N			echnical Not in Degree Audit		Clinical Practicum:		0.0	Work-based Learning:		0.0	WBL ECH:	0.0
COURSE PCS #	PCS # 11 - 27.0101				IAI Code		M1 900-1, MTH901 Contact Hours (Minute			(Minutes/W	eek)			
Repeatable (Y/N):	Ν		Pass/Fail (Y/N):	Z	Variable Credit (Y/N):	Z	Min:		Max:		16 Wks	250	8 Wks	500
Prerequisites: Placement by assessment or a grade of "C" or higher in MAT-132 or MAT-140. Also one year of high school geometry.														
Corequisite:	orequisite: None													
Catalog Description: (40 Word Limit) Differential and integral calculus of elementary functions of one variable, such as polynomial, rational, radical, trigonometric, inverse trigonometric, exponential and logarithmic functions, will be covered. Applications include rates of change, optimization, curve sketching and area. A graphing calculator is required. Ask instructor for calculator recommendations.														

List the Major Course Segments (Units)	Contact Lecture Hours	Contact Lab Hours	Clinical Practicum	Work-based Learning
Preparation for calculus	4			
Limits	13			
Differentiation	20			
Applications of differentiation	17			
Integration	21			
TOTAL	75	0	0	0

		EVALUATION		
QUIZZES 🗸	EXAMS 🗸	ORAL PRES		PAPERS
LAB WORK	PROJECTS	COMP FINAL	✓	OTHER

COURSE MATERIALS			
TITLE:	Calculus: Early Transcendental Functions		
AUTHOR:	Ron Larson & Bruce Edwards		
PUBLISHER:	Cengage Learning		
VOLUME/EDITION/URL:	7th edition		
COPYRIGHT DATE:	2019		

MAJOR COURSE SEGMENT	HOURS	LEARNING OUTCOMES
		The student will be able to:
Preparation for Calculus	Graph linear and other elementary functions using x- and y- intercepts, symmetry, reflection, and translation.	
Graphs, lines and functions	1	2. Find domain and range of functions. 3. Identify the definition and properties of the natural
Inverse functions	1	logarithmic and exponential function. 4. Illustrate properties of inverse functions, including how
Exponential and logarithmic functions	2	to find the inverse.
Limits		
Finding limits graphically and numerically	2	
Finding limits analytically	3	 Find limits graphically, numerically and analytically. Identify properties of limits and definition of continuity.
Continuity and one-sided limits	4	Find one-sided limits, infinite limits, and vertical asymptotes.
Infinite limits and vertical asymptotes	2	
Review/Exam	2	
Differentiation		
Tangent line problem	2	
Basic rules	2	Demonstrate the connection between derivative and
Rates of change	2	slope of tangent line. 2. Identify the basic rules of differentiation, including

Product and quotient rules	3	product, quotient and chain rules. 3. Find the derivative using the limit definition.
Chain rule	3	Differentiate polynomials, rational and trigonometric functions.
Implicit differentiation	2	5. Illustrate logarithmic and exponential functions to bases other than Θ .
derivatives of inverse functions	2	6. Differentiate logarithmic and exponential functions.
Related rates	2	
Review/Exam	2	
Application of differentiation		
Extrema	2	
Rolle's theorem and mean value	2	Find absolute extrema on a closed interval. Find relative extrema on an interval.
First derivative test	3	ldentify first and second derivative tests and extreme value theorem.
Second derivative test and concavity	3	3. Illustrate the connection between second derivative and concavity.
Limits at infinity and horizontal asymptotes	2	Find limits at infinity and horizontal asymptotes. Combine all techniques of analytic geometry and
Curve sketching	2	calculus so far to graph functions. 6. Solve optimization problems.
Optimization	1	
Review/Exam	2	
Integration		
Antiderivatives and indefinite integrals	2	
Area	3	I. Identify the connection between antiderivatives and
Definite integrals	2	indefinite integrals. 2. Identify basic integration rules.
Fundamental theorem of calculus	3	3. Solve initial condition problems. 4. Illustrate the area interpretation of definite integral.
Integration by substitution	4	Identify fundamental theorem of calculus. Perform integration by substitution.
Integration with natural log	3	7. Find integrals involving inverse trigonometric functions.
Integrating inverse trigonometric functions	2	
Review/Exam	2	
	75	

Outcomes*	Outcome Title	At the successful completion of this course, students will be able to:	
Course Outcome 1	Continuity Funct	Analyze the continuity of functions.	
Course Outcome 2	Limits Funct	Find the limits of functions graphically and algebraically.	
Course Outcome 3	Derivatives Funct	Find derivatives of algebraic and transcendental functions.	
Course Outcome 4	Derivatives Graphs	Demonstrate the first and second derivatives to analyze graphs of functions.	
Course Outcome 5	Find Integrals	Find integrals of some algebraic and transcendental functions.	
Course Outcome 6	Apply Integrals	Use integrals to solve applied problems.	
Primary Laker Learning Competency	Critical Thinking: Students connect knowledge from various disciplines to formulate logical conclusions.		
Secondary Laker Learning Competency	Quantitative Literacy: Stude	ents analyze data and mathematical patterns in real-life situations.	

^{*}Course and program outcomes will be used in the software for outcomes assessment and should include at least 1 primary and 1 secondary Laker Learning Competency. Limit to 3-5.