2/20/2025	DATE
	REQUIRED COURSE
	FLECTIVE COLIRSE

MSD	DIVISION
	NEW COURSE
7	REVISION

Lake Land College Course Information Form

COURSE NUMBER:		MAT-242 TITLE: (30 Characters Max) Analytical Geom-Calc II										
SEM CR HRS:	4	Lecture:		4		Lab:	0				ECH:	4
Course Level:		Gen Ed/IAI Career/Technical Baccalaureate/Non-IAI Dev Ed/Not in Degree Audit			Clinical Practicum: 0			Work- Learı	based ning:	0	WBL ECH:	0
Course PCS & CIP:		11 - 27.0101 IAI Code:				M1 900	0-2 and MTH 90)2	Con	tact Hours (rs (Minutes/Week)	
Repeatable (Y/N):	N	Pass/Fail (Y/N):	Ν	Variable Credit (Y/N): N		Min:	Max:		16 Wks	200	8 Wks	400
Prerequisites:		MAT-241 with grade of "C" or high	er									
Corequisites:		None										
Catalog Description: (40 W Limit)		A continuation of Calculus I with em Maclaurin series. A graphing calcula		sis on different methods of integration an s required.	nd a	applications, L	_`Hôpitals Rule,	sequences	s, series, po	ower serie	s, Taylor se	eries and

List the Major Course Segments (Units)	Contact Lecture Hours	Contact Lab Hours	Clinical Practicum	Work-based Learning
Applications of integration	12			
Techniques of integration and L'Hôpital's Rule	19			
Infinite series, sequences, tests for series, Taylor polynomials, functions and Maclaurin series	17			
Calculus with parametric and polar equations, conic sections	12			
TOTAL	60	0	0	0

QUIZZES			EVALUATION		
LAR WORK PROJECTS COMP FINAL COMP	QUIZZES 🗹	EXAMS ☑	ORAL PRES	PAPERS	
DAD WORK DINANCE COMIT TIME CONTRACT CO	LAB WORK 🗌	PROJECTS	COMP FINAL	OTHER	

	COURSE MATERIAL	S
TITLE:	Calculus: Early Transcendental Functions	
AUTHOR:	Ron Larson & Bruce Edwards	
PUBLISHER:	Cengage Learning	
VOLUME/EDITION/URL:	7th edition	
COPYRIGHT DATE:	2019	

MAJOR COURSE SEGMENT	HOURS	LEARNING OUTCOMES
		The student will be able to:
Applications of integration		
Area of a region between two curves	2	1. Apply different methods of integration to solve a variety
Volume: the disk method	2	of problems. 2. Apply integration to find area between two curves. 3. Apply integration to find volumes using the disc method.
Volume: the shell method	1	Apply integration to find volumes using the disc method. 4. Apply integration to find volumes using the shell method. ———————————————————————————————————
Arc length and surfaces of revolution	2	5. Apply integration to find the lengths of arcs. 6. Apply integration to find areas of surfaces of revolution.
Work	2	7. Find amount of work of a constant force and variable force, centers of mass and moments, and fluid pressure,
Moments, center of mass, and centroids	2	force.
Fluid pressure and fluid force	1	
Techniques of integration and L'Hôpital's Rule		
Basic integration rules	2	
Integration by parts	3	
Trigonometric integrals	3	 Identify and evaluate new types of integrals and apply them to various problems, emphasizing integration by
Trigonometric substitution	3	parts, partial fractions, trigonometric substitutions and trigonometric integrals.
Partial fractions	3	 Apply L'Hôpital's Rule to indeterminate forms and improper integrals.
Indeterminate forms and L'Hôpital's Rule	2	
Integration by tables and other integration techniques	1	
Improper integrals	2	

Infinite series, sequences, tests for series, Taylor polynomials, functions	s, Maclaurin series	
Sequences	1	
Series and convergence	2	
The integral test and p-series	2	
Comparisons of series	2	Work with different types of sequences and series, emphasizing the integral test, p-series test, comparison
Alternating series	2	tests, alternating series test and ratio and root tests. 2.Construct Taylor polynomials, power series and Taylor
The ratio and root tests	1	and Maclaurin series.
Power series	1	
Representation of functions by power series	2	
Taylor polynomials and approximations	2	
Taylor and Maclaruin series	2	
Calculus with parametric and polar equations, conic sections		
Conics and calculus	3	Identify equations for conic sections and be able to
Plane curves and parametric equations	2	graph them. 2. Represent and graph equations in parametric form.
Parametric equations and calculus	2	Apply calculus to parametric equations. Represent and graph equations in polar coordinates.
Polar coordinates and graphs	2	5. Apply calculus to polar equations.
Area and arc length in polar coordinates	3	
	60	

Outcomes*	At the successful completion of this course, students will be able to:
Course Outcome 1	Apply integration to find the area between two curves.
Course Outcome 2	Apply integration to find the volume of a solid of revolution by both the disk (washer) and shell methods.
Course Outcome 3	Identify the basic 18-20 integration formulas.
Course Outcome 4	Apply the major integration techniques: parts, trigonometric substitution, partial fractions, L'Hôpital's Rule and improper integrals.
Course Outcome 5	Determine the convergence/divergence of sequences of numbers.
Course Outcome 6	Perform the major convergence/divergence tests for infinite series: Nth-term test, geometric series, integral test, p-series, alternating series, direct and limit comparison, ratio tests and root tests.
Course Outcome 7	Construct Maclaurin and Taylor polynomials and series for functions.
Course Outcome 8	Identify conic sections, especially ellipses and hyperbolas.
Course Outcome 9	Apply parametric equations for plane curves and their calculus.
Course Outcome 10	Apply polar coordinates and graphs and their calculus.
Primary Laker Learning Competency	Critical Thinking: Students connect knowledge from various disciplines to formulate logical conclusions.
Secondary Laker Learning Competency	Quantitative Literacy: Students analyze data and mathematical patterns in real-life situations.

^{*}Course and program outcomes will be used in the software for outcomes assessment and should include at least 1 primary and 1 secondary Laker Learning Competency. Limit to 3-5.