Math/Science DIVISION

____REQUIRED COURSE ___ELECTIVE COURSE ____NEW COURSE ____X__REVISION

LAKE LAND COLLEGE Course Information Form

 COURSE NUMBER
 MAT243
 TITLE
 Analytic Geometry and Calculus III

 SEM CR HRS
 4
 LT HRS
 4
 LAB HRS
 SOE HRS
 ECH
 4

 COURSE PCS #
 (Assigned by Administration)

PREREQUISITES: MAT242

Catalog Description (40 Word Limit): <u>A continuation of Analytic Geometry and</u>

Calculus II. The focus is on solid analytic geometry, vectors, partial derivatives, line,

volume and surface integrals in various coordinate systems, and vector fields. A

graphing calculator is required. Ask instructor for calculator recommendations.

CONTENT	LECTURE
OUTLINE	HOURS

Vectors and Applications in Geometric Space	12
Vector-Valued Functions	8
Functions of Several Variables and their Derivatives	15
Multiple Integrals	15
Vector Fields, Line & Surface Integrals & Related Theorems	10
Total Hours	60

EVALUATION:	Quizzes <u>X</u>	_ Exams <u>X</u>	Oral Pres.	Papers
	Lab Work	Proiects	Comp. Final X	Other

Textbook:	Fitle <u>Ca</u>	lculus: Ea	rly Transc	endental Function	<u>s</u>
Author Roland Larson, Robert Hostetler, Bruce Edwards					
Publisher Houghton, Mifflin and Company					
Ň	/olume/Ed	dition 6th	n Edition	Copyright Date	2015

SEE REVERSE FOR CONTENT DETAIL

Hours

Conic Sections Review	1	Each student will under-
Vectors in a Plane and in Space	2	stand vectors and use
Dot and Cross Products	3	vectors and vector product
Lines and Planes in Space	2	to solve problems, and
Surfaces in Space	2	represent geometric
Cylindrical and Spherical Coordinates	2	sufaces in space.
ector-Valued Functions		Each student will be able
Vector-Valued Functions	1	understand vector-valued
Differentiation and Integration of Vector Functions	2	functions and their useful-
Velocity and Acceleration	1	ness in representing curve
Tangent and Normal Vectors	2	and motion along a curve.
Arc Length and Curvature	2	
unctions of Several Variables and Their Derivatives		Each student will be able t
Limits and Continuity	1	graph and differentiate
Derivatives (Partial, Differentials, Chain Rule)	5	functions of several vari -
	5	
Gradient	2	ables and use these skills
Gradient	2	ables and use these skills
Gradient Tangent Planes and Normal Lines Extrema of Functions of Two Variables	2 2	ables and use these skills to solve optimization and gradient problems.
Gradient Tangent Planes and Normal Lines	2 2	ables and use these skills to solve optimization and
Gradient Tangent Planes and Normal Lines Extrema of Functions of Two Variables ultiple Integrals	2 2 5	ables and use these skills to solve optimization and gradient problems. Each student will be able t
Gradient Tangent Planes and Normal Lines Extrema of Functions of Two Variables ultiple Integrals Double Integrals	2 2 5 3	ables and use these skills to solve optimization and gradient problems. Each student will be able t integrate functions of
Gradient Tangent Planes and Normal Lines Extrema of Functions of Two Variables ultiple Integrals Double Integrals Double Integrals in Polar Coordinates	2 2 5 3 2	ables and use these skills to solve optimization and gradient problems. Each student will be able t integrate functions of several variables in order t
Gradient Tangent Planes and Normal Lines Extrema of Functions of Two Variables Ultiple Integrals Double Integrals Double Integrals in Polar Coordinates Surface Area	2 2 5 3 2 2 2	ables and use these skills to solve optimization and gradient problems. Each student will be able t integrate functions of several variables in order to determine areas (plane
Gradient Tangent Planes and Normal Lines Extrema of Functions of Two Variables Ultiple Integrals Double Integrals Double Integrals in Polar Coordinates Surface Area Triple Integrals	2 2 5 3 2 2 2 4	ables and use these skills to solve optimization and gradient problems. Each student will be able t integrate functions of several variables in order to determine areas (plane and surface) and volumes

ATTACH ADDITIONAL PAGES IF NEEDED

Vector Analysis		Each student will be able to
Vector Fields	2	understand vector fields
Line Integrals	2	and their usefulness in
Green's Theorem	2	representing various types
Surface Integrals	2	of force fields and velocity
Divergence Theorem	1	fields, and mathematically
Stokes Theorem	1	manipulate these fields
		through several theorems
		to solve real life problems.

Course Outcomes: At the successful completion of this course, students will be able to:

- Evaluate slopes and areas of curves expressed in parametric and polar form.
- Perform basic operations with vectors and understand the uses of the operations in mathematical areas.
- Evaluate and understand partial derivatives and their uses in optimization problems.
- Set up and evaluate double and triple integrals in different coordinate systems.
- Calculate key properties of vector fields and integrate over a path.

General Education Goals:

Critical Thinking, Objective d.: Students will apply critical thinking skills through interpreting initial results. Students will learn how to interpret results obtained by calculating vector products, partial derivatives, and line and surface integrals. Students will analyze how their results relate to curves and surfaces and applied problems.

Critical Thinking, Objective e.: Students will apply critical thinking skills through transferring insights to new contexts. Students will obtain a fundamental understanding of two and three dimensional vectors and their properties, which will allow them to explore curves and surfaces in space. Furthermore, students will apply the techniques of partial differentiation and iterated integrals in order to solve problems involving optimization, volume and area.

Problem Solving, Objective b.: Students will demonstrate scientific and quantitative problem-solving skills through performing mathematical operations. *Students will perform mathematical operations while calculating and solving problems involving vectors, partial derivatives, multiple integrals and vector integrals.*

Problem Solving, Objective c.: Students will demonstrate scientific and quantitative problem-solving skills through interpreting tables and graphs. *Students will learn how to interpret and analyze graphs in two and three dimensions while exploring the concepts of vector valued functions, directional derivatives and various area and volume calculation methods.*