11/10/2022 DATE REQUIRED COURSE ELECTIVE COURSE

□ ✓

MSD DIVISION NEW COURSE REVISION

Lake Land College

			(Course Information For	m							
COURSE NUMBER: MAT-255			TITLE: (30 Characters	Max) Linear Algeb		Algebra						
SEM CR HRS:	3	Lecture:		3			Lab:	0			ECH:	3
Course Level:		Gen Ed / IAI Baccalaureate /Non-IAI		Technical Not in Degree Audit	Clinic	al Practi	cum:	0	k-based _earning	0	WBL ECH:	0
COURSE PCS #		11 - 27.0101		IAI Code					Conta	ct Hours (Mi	inutes Per V	Veek)
Repeatable (Y/N):	Ν	Pass/Fall (Y/N):	Ν	Variable Credit (Y/N):	Ν	Min:		Max:	16 Wks	150	8 Wks	300
Prerequisites:		MAT-241 with grade of 'C'	or higher									
Catalog Description: (40 W Limit)	A first course in linear algebra covering linear systems, matrices, determinants, vector spaces, inner product spaces, and eigenvalues and eigenvectors, including proofs of theorems and propositions in each topic.											

List the Major Course Segments (Units)	Contact Lecture Hours	Contact Lab Hours	Clinical Practicum	Work-based Learning
Systems of Linear Equations	5			
Matrices	8			
Determinants	8			
Vector Spaces	12			
Inner Product Spaces	8			
Other Topics	4			
- Linear Transformations				
- Diagonalization				
TOTAL	45	0	0	0

		EVALUATION		
QUIZZES 🗹	EXAMS 🗹		ORAL PRES	PAPERS
LAB WORK	PROJECTS 🗹		COMP FINAL	OTHER
		COURSE MATERIALS		
TITLE:	Differential Equations & Linear Alge	ebra		
AUTHOR:	Goode and Annin			
PUBLISHER:	Pearson			
VOLUME/EDITION/URL:	4 th			
COPYRIGHT DATE:	2018			

MAJOR COURSE SEGMENT	HOURS	LEARNING OUTCOMES		
		The student will be able to:		
Systems of Linear Equations				
Parametrization	1	Write solution of linear system in parametric form		
Elementary Row Operations	1	Learn to use elementary row operations		
Gaussian and Gauss-Jordan elimination	2	Row-reduce a matrix to row-echelon or reduced row- echelon form		
Application: Polynomial Curve Fitting	1	Find polynomial through n data points		

Matrices			
Matrix Operations	3	Learn matrix operations	
Transpose and Inverse of a Matrix	3	Use transpose and inverse of a matrix and prove theorems about matrix properties	
Elementary Matrices	1	Use elementary matrices	
Application: Least Squares Regression	1	Find line of best fit for n data points	
Determinants			
Computation of Determinant	2	Learn how to compute determinant	
Properties	3	Learn properties of determinants and prove theorems about them	
Andiantiana Einenada Einenantan Carantía Dula		Find simple eigenvalues and eigenvectors	
Applications: Eigenvalues and Eigenvectors, Cramer's Rule	3	Use Cramer's Rule to solve linear systems	
Vector Spaces			
Vector Operations and Properties	1	Learn vector operations and their pro	
Vector Spaces and Subspaces	2	Recognize vector spaces and subspaces	
Spanning and Linear Independence	2	Determine spanning and linear independence and prove theorems about vector spaces	
Basis and Dimension	2	Find a basis for a vector space	
Rank and Nullity	2	Understand rank and nullity of a matrix	
Coordinates and Change of Basis	2	Find coordinates of a vector relative to a basis and find transition matrix from one basis to another	
Application: Linear Differential Equations	1	Find the solution space of a homogeneous differential equation	
Inner Product Spaces			
Length and Unit Vectors	1	Compute length of a vector	

Dot Product and Angle Between Vectors	2	Compute dot product of 2 vectors
Inner Product Spaces	2	Understand inner product spaces and prove theorems about them
Orthogonal Projections	1	Find orthogonal projection of one vector onto another
Application: Gram-Schmidt Orthonormalization	2	Use Gram-Schmidt orthonormalization procedure to construct an orthonormalized basis for an inner product space
Other Topics		
Linear Transformations	2	Learn basic ideas of linear transformation: kernel, range, rank, nullity, etc.
Diagonalization	2	Learn to diagonalize a matrix
Insert New Line Above this Line		
	45	

COURSE OUTCOMES*	At the successful completion of this course, students will be able to:
	Solve linear system in parametric form.
	Use elementary row operations
	Perform matrix operations
	Compute determinants
	Recognize vector spaces and apply subspace test
	Determine spanning and linear independence
	Find basis and dimension for a vector space
	Perform operations in an inner product space
	Prove theorems involving matrices, determinates, vector space, inner product spaces, and eigenvalues

* Course Outcomes will be used in the Assessment Software for Outcomes Assessment. Limit to 3 - 5.