2/21/2025	DATE
	REQUIRED COURSE
\checkmark	ELECTIVE COURSE

Lake Land College

				Course Information For	n								
COURSE NUMBER:		PHY-115		TITLE: (30 Characters Max	<)		Astronor	ny					
SEM CR HRS:	3	Lecture:		3		La	b:	0				ECH:	3
Course Level:	_			Technical Not in Degree Audit	Clir	nical Prac	ticum:	0		-based ning:	0	WBL ECH:	0
Course PCS & CIP:		11 - 40.0201		IAI Code			P1	906		Cor	tact Hours	(Minutes/W	eek)
Repeatable (Y/N):	Ν	Pass/Fail (Y/N):	N	Variable Credit (Y/N):	Ν	Min:		Max:		16 Wks	150	8 Wks	300
Prerequisites:		None											
Coerequisites:		None											
Catalog Description: (40 W Limit)	'ord			iture prospects of astronomy and the pirth and death of stars, galaxies and			omy has	had on cul	ture. Top	ics includ	e the nigh	t sky, con	nparative

List the Major Course Segments (Units)	Contact Lecture Hours	Contact Lab Hours	Clinical Practicum	Work-based Learning
Powers of ten/observing the sky	5			
Orbits and gravity	3			
History	3			
Earth, moon and sky	5			
Radiation and spectra	3			
Earth compared to Venus and Mars	6			
The sun	3			
Celestial distances	4			
Stellar properties	4			
Stellar evolution	5			
Cosmology	4			
TOTAL	45	0	0	Ó

		EVALUATION		
QUIZZES 🗸	EXAMS 🗹		ORAL PRES	PAPERS
LAB WORK	PROJECTS 🗹		COMP FINAL	OTHER homework
		COURSE MATERIALS		
TITLE:	Cosmic Perspective			
AUTHOR:	Bennett, Donahue, Scheider, & Voit			
PUBLISHER:	Thompson Publishing			
VOLUME/EDITION/URL:	8th			
COPYRIGHT DATE:	2017			

MAJOR COURSE SEGMENT	HOURS	LEARNING OUTCOMES
		The student will be able to:
Powers of ten/observing the sky	5	1. Identify the basic size of objects in the universe.
Orbits and gravity	3	 Explain the physics of mass, weight, forces and angular momentum as they pertain to astrophysical objects.
History	3	1. Illustrate the progression of astronomical ideas using select historical figures.
Earth, moon and sky	5	1. Demonstrate how the geometry of the solar system results in such phenomena as seasons and eclipses.
Radiation and spectra	3	1. Illustrate how the electromagnetic spectrum is used in astronomical observations.
Earth compared to Venus and Mars	6	1. Critique the special circumstances of the Earth as it relates to life.
The Sun	3	1. Identify different solar properties and how the Sun produces energy.
Celestial distances	4	 Outline the techniques used to determine distances to planets, stars and galaxies.

MSD DIVISION

Stellar properties		1. Explain the various stellar properties and how to determine them using an HR diagram.
Stellar evolution		 Compare and contrast the evolution and ultimate fate of stars with different masses.
Cosmology		 Summarize the scientific theory of the origin and evolution of the universe.
	45	

Outcomes*	At the successful completion of this course, students will be able to:
Course Outcome 1	Demonstrate the basics of the night sky, including such concepts as the axial tilt of Earth and the plane of the ecliptic.
Course Outcome 2	Explain how comparative planetary science is used to study the similarities and differences between Earth and other planets in the solar system.
Course Outcome 3	Identify the basic ideas behind determining stellar distances.
Course Outcome 4	Summarize the basic ideas concerning stellar evolution and star death.
Course Outcome 5	Outline the basics of modern cosmology, particularly the importance of the Cosmic Microwave Background (CMB).
Primary Laker Learning Competency	Scientific Literacy: Students apply the scientific process to real-life situations.
Secondary Laker Learning Competency	Quantitative Literacy: Students analyze data and mathematical patterns in real-life situations.

*Course and program outcomes will be used in the software for outcomes assessment and should include at least 1 primary and 1 secondary Laker Learning Competency. Limit to 3-5.