9/15/2022	DATE
✓	REQUIRED COURSE
	ELECTIVE COURSE

MSD DIVISION NEW COURSE REVISION

Lake Land College

			(Course Information For	m								
COURSE NUMBER:	f	PHY-239	1Y-239 TITLE: (30 Characters Max) Mechanics I										
SEM CR HRS:	3	Lecture:		3			Lab:	0				ECH:	3
Course Level:		ien Ed / IAI Baccalaureate /Non-IAI		Technical Not in Degree Audit	Clinic	al Practi	cum:	0	In	SOE/ ternship:	0	SOE ECH:	0
COURSE PCS #		11 - 14.1101		IAI Code						Conta	ict Hours (M	nutes Per W	Veek)
Repeatable (Y/N):		Pass/Fail (Y/N):		Variable Credit (Y/N):		Min:		Max:		16 Wks	150	8 wks	300
Prerequisites:	ŀ	PHY-140 with grade of 'C'	or higher, M	AT-242									
Catalog Description: (40 W Limit)	ord .	This course is a study of the	e mechanics	of static, rigid bodies for enc	gineerir	ng studer	nts.						

List the Major Course Segments (Units)	Contact Lecture Hours	Contact Lab Hours	Clinical Practicum	Non-Clinical Internship/ SOE
Vectors	4			
Forces and Equilibrium	4			
Moments	5			
Equilibrium of a Rigid Body	6			
Analysis of Structures	4			
Centroids and Centers of Mass	5			
Moments of Inertia - (Area and Mass)	5			
Friction	3			
Internal Forces and Moments	6			
Virtual Work	3			
TOTA	L 45	0	0	0

		EVALUATION		
	EXAMS 🗹	ORAL PRES		PAPERS 🗆
LAB WORK	PROJECTS 🗹	COMP FINAL	~	OTHER 🗹 homework

	COURSE MATERIALS	
TITLE:	Engineering Mechanics: Statistics	
AUTHOR:	R.C. Hibbeler	
PUBLISHER:	Prentice Hall	
VOLUME/EDITION/URL:	12th	
COPYRIGHT DATE:	2010	

MAJOR COURSE SEGMENT	HOURS	LEARNING OUTCOMES
		The student will be able to:
Vectors		
Manipulating vectors 2-D & 3-D Dot Product Cross Products	4	• Perform vector operations and use vectors to model problems in two and three dimensions.
Forces and Equilibrium Diagrams		
Forces and Free Body Diagrams 2-D Force Systems 3-D Force Systems	4	• Create and use free-body diagrams and the concept of equilibrium to determine unknown forces in engineering problems.
Moments		
2-D Moments Moment Vector Moment of Force About a Line Couples Equivalent Systems	5	 Demonstrate moments and calculate the moments exerted on a body due to applied forces. Students will also analyze problems by representing them with equivalent systems.
Rigid Body Equilibrium		

Supports and Reactions Equilibrium Equations 2-D Applications 3-D Applications Statically Indeterminate Objects Two-force and Three-force Members Analysis of Structures	5	 Model various supports with equivalent forces and moments, and use the resulting system in equilibrium to solve for unknown or required forces and moments acting on objects.
Analysis of Structures		
Methods of Joints Method of Sections Space Trusses Frames and machines	4	• Determine forces in members of trusses and frames using the method of joints or sections.
Centroids and Centers of Mass		
Volume, Area and Line Centroids Distributed Loads Centers of Mass	5	• Determine the centroid or center of mass of an object in order to represent a distributed weight or force by a single equivalent force acting through the object's "center".
Moments of Inertia		
Area Moment of Inertia Area: Parallel Axis Theorem Mass Moment of Inertia Mass: Parallel Axis Theorem	5	• Calculate the moments of inertia of simple objects and then use the parallel-axis theorems to determine the moments of inertia of more complex objects.
Friction		
Theory, Coefficients Applications	3	 Involve friction in the analysis of problems involving surfaces in contact, specifically wedges, threaded connections, bearings and belts.
Internal Forces and Moments		
Axial & Shear Forces, Moments Force and Moment Diagrams Calculus Relationships Liquids and Gases	6	 Determine the internal forces and moments in beams and create corresponding force and bending moment diagrams. Analyze the pressure distributions in liquids and gases.
Virtual Work	3	• Apply the principle of virtual work to solve and analyze structural systems and problems
Insert New Line Above this Line		
	44	

COURSE OUTCOMES*	At the successful completion of this course, students will be able to:
	Calculate the net moment acting on objects due to couples and applied forces.
	Calculate the net moment acting on objects due to couples and applied forces.
	Solve for unknown forces and required supports on objects, trusses and frames in static equilibrium.
	Calculate the centroid or center of mass of objects.
	• Calculate and demonstrate the significance of moments of inertia and mass moments of inertia about various axes.
	Calculate internal shear forces and bending moment on a loaded beam.

* Course Outcomes will be used in the Assessment Software for Outcomes Assessment. Limit to 3 - 5.