12/13/17	DATE
X	REQUIRED COURSE
	ELECTIVE COURSE

Technology	DIVISION
	NEW COURSE
Х	REVISION

LAKE LAND COLLEGE Course Information Form

COURSE NUMBE	ER:	EET 048 TITLE: Digit		al Circuits							
SEM CR HRS:	•	3	Lecture:	2	L	ab:	2	SOE:		ECH:	4
COURSE PCS #									(Assigned	l by Adminis	stration)
Prerequisites	EET	076 Dig	ital Electroi	nics							
Catalog Description: application or digital logic fundamer					rices to consumer products. Advanced als in design operation of digital circuits						
(40 Word Limit)		& syste	& systems.								
List th	е Ма	ajor Cou	rse Segmer	nts (Units	s)		Conta	ct Lt Hrs.	Conta	ct Lab Hr	s.
Registers								6		4	
Counter						6		10			
CPU						12 16					
CPU Decoders and Encoders TTL, CMOS logic families					3						
TTL, CMOS logic families						3					

EVALUATION							
QUIZZES:	Х	EXAMS:	Х	ORAL PRES:		PAPERS:	
LAB WORK:	Χ	PROJECTS:		COMP FINAL:	X	OTHER:	

TEXTBOOK				
TITLE:	Digital Electronics			
AUTHOR:	Tokheim			
PUBLISHER:	McGraw Hill			
VOLUME/EDITION:	7 th			
COPYRIGHT DATE:	2008			

MAJOR COURSE SEGMENT	HOURS	LEARNING OUTCOMES
		The student will be able to:
Registers	6	Understand shift registers, serial and parallel data transfer.
Lab – 7 segment Display	2 Lab	Construct and test a 7 segment display circuit
Lab – Flip Flop	2 Lab	Construct and test NAND and NOR gate flip flop circuits.
Counters	6	Understand how asynchronous (ripple) binary counters work and that counters use unconventional signal flow. Understand Mod number and State transition diagrams. Use counters to decode BCD. Cascade counters to count in BCD. Understand when Schmitt trigger devices might be needed.
Lab – Digisim	2 Lab	Design and simulate a 4 bit binary counter (74LS93)
Lab – Counters	2 Lab	Design and simulate a 60 counter using both a Decade counter and a Binary counter.
Lab – One shots	3 Lab	Explore the differences between re-triggerable and non-retriggerable one-shots.
CPU	12	Understand basic microprocessor principles and digital logic programming to include ALU, Buses, program counters and memory.
Lab – CPU	6 Lab	Design and simulate a working microprocessor circuit.
Decoders, Encoders, Muliplexers and Demultiplexers	3	Understand Decoders, Encoders, Multiplexers and Demultiplexers, as well as Binary to BCD are covered.
TTL and CMOS	3	Cite the basic Characteristics of digital IC's. Understand the differences between TTL and CMOS.
Lab – Alarm Clock	6 Lab	Design and simulate a working alarm clock complete with snooze alarm.
Lab – CPU II	6 Lab	Design and simulate a working CPU with display options.

Course Outcomes: At the successful completion of this course, students will be able to:

- Demonstrate the operation of a 7 segment decoder.

 Design and construct counter logic circuits and describe the circuits' input/output logic.
- Troubleshoot combinatorial logic circuits.
- Design and construct a programmable counter.