X	DATE REQUIRED COURSE ELECTIVE COURSE					echnology X	DIVISION NEW COURSE REVISION
LAKE LAND COLLEGE Course Information Form							
COURSE NUM	IBER	MET 084	TITLE	Technica	al Mecha	nisms	
SEM CR HRS	6_3	LT HRS	2	LAB HRS	2	SOE HRS	ECH
COURSE PC	S# _					(Assigne	ed by Administration)
Prerequisites	s: T	- EC054 – Teo	ch Math	III, CAD 056	– CAD I		

Catalog Description (40 Word Limit):

Focuses on motion analysis of mechanical system components such as linkages, slider-crank mechanisms, working connectors, cams, gears and gear trains.

List the Major Cour	se Segments	(Unit	Lt Hrs	Lab Hrs				
Introduction to Mec	hanisms and	Kine		4	4			
Vectors			3	3				
Kinematic Analysis			4	4				
Limiting Positions			2	2				
Mechanism Design			4	4				
Pivot Point Location	ns		1	2				
Velocity Analysis				1	1			
Cam Design			2	2				
Follower Motion Sc			1	1				
Gears and Gear Tr			3	3				
Mechanical Drive Setup Techniques					2	7		
EVALUATION:	Quizzes	Х	Exams	Х	Oral Pres	Papers		
	Lab Work	Χ	Projects	Х	Comp Final X	Other		
Textbook:	Title:	Ма	chines and	Mech	anisms (Applied Kii	nematic Analysis)		
	Author: David H. Myszka							
	Publisher: Prentice-Hall Inc.							
	Volume/Edition: 4th Edition							

Copyright Date: 2012

Major Course Segment	Hours	Learning Outcomes The student will be able to:
Introduction to Mechanisms and Kinematics	8	Determine kinematic components and draw a kinematic diagram from a view of a complex machine.
Vectors Vector representation and addition	3	Use vectors to mathematically and graphically determine the displacement of links.
Vector components	3	Resolve component vectors into x and y components to determine the resultant vector magnitude and direction.
Kinematic analysis	8	Determine the position of all links in a mechanism as the driver link is displaced using analytical and graphical techniques.
Limiting Positions	4	Determine the limiting positions of a mechanism.
Mechanism Design	8	Determine the linkage dimensions, given the desired range of movement. (Kinematic Synthesis)
Pivot Point Locations	3	Use graphical techniques to locate pivot points to move follower between two prescribed positions.
Velocity Analysis	2	Solve the linear velocity of a point on a rotating link.
Cam Design Classification and displacement diagram	4	Identify the types of cams and followers. Determine the stroke and dwell locations from a cam displacement diagram.
Follower motion schemes	2	Recognize the cams motion of constant velocity, constant acceleration, harmonic or cycloidal from a displacement diagram.
Gears and Gear Trains Introduction and classification	3	Know gear types, terminology, be able to calculate angular velocity and torque.
Standard gear systems	3	Identify gear systems adopted by the USA Standards Institute, design a gear system, determine diametrical pitch, pitch diameter, number of teeth, and contact ratio.
Mechanical Drive Setup Techniques	9	Use mechanical drives trainers to mount and level motors, align couplers, install chain and gear drives

Course Outcomes: At the successful completion of this course, students will be able to:

- Complete positional analysis of linkage systems.
- Determine the limiting positions of a follower linkage.
- Complete kinematic synthesis of a 4-bar linkage system.
- Identify different gear types.
- Solve the torque and speed of gear trains.
- Use proper techniques to install different mechanical drive systems.